Alt ve üst tabanları paralel eş şekillerden oluşan cisimlere prizma denir. Yan yüzeyleri taban düzlemine dik olan prizmalara dik prizma adı verilir.
Prizmalarda yan yüzeyleri birleştiren ayrıtlara yanal ayrıt denir.
Prizmanın Hacmi
Dik prizmanın taban biçimi nasıl olursa olsun, yanal yüzeyi daima bir dikdörtgen olur. Yanal yüzü oluşturan dikdörtgenin alt kenarı tabanın çevresi kadardır. Diğer kenarı ise h yüksekliği kadar olur.
Bütün dik prizmaların yanal alanı taban çevresi ile yüksekliğin çarpımıdır. Bütün Alan ise yanal alan ile iki taban alanının toplamıdır.
1. Dikdörtgenler Prizması
Cisim köşegeni daima prizmanın içinden geçer. Yüzeylerinden geçmez. Sadece bir yüzeyden geçen köşegene o yüze ait yüzey köşegeni denir. Burada köşegenlerin uzunlukları |AC'| = |A'C| = |BD'| = |B'D| = e (cisim köşegeni) |BD| = f (Yüzey köşegeni) olsun. Bu durumda
2. Kare Prizma Tabanı kare olan prizmalara kare prizma denir. Yan yüzü dört adet eş dikdörtgenden oluşur.
Yanal Alan = 4 . a . h
Cisim köşegeni : e = Öa2 + a2 + h2 3. Küp Bütün ayrıtları birbirine eşit olan dik prizmaya küp denir. Tüm yüzeyleri kare dir.
Kübün yüzey köşegenleri birbirine eşittir. Yüzey köşegeni: f = aÖ2 Cisim köşegeni: e = aÖ3 4. Üçgen Prizmalar Prizmalar tabanlarının şekline göre isim aldıklarından tabanı üçgen olan prizmalara üçgen prizma denir. Üçgen prizmalar tabanını oluşturan üçgene göre isimlenir. a. Eşkenar Üçgen Prizma Eşkenar üçgen prizmanın tabanları eşkenar üçgendir. Yan yüzeyleri ise üç tane eş dikdörtgenden oluşur.Tabanı eşkenar üçgen olduğundan
Tabanı eşkenar üçgen olduğundan
Taban çevresi 3a olduğundan, yanal alan 3a.h dır. Buradan tüm alanı
b. Dik Üçgen Prizma Dik üçgen prizmanın tabanı dik üçgendir. Yan yüzeyleri ise üç tane dikdörtgenden oluşur.
Tabanı dik üçgen olduğundan
Taban çevresi a + b + c olduğundan, Yanal alan = (a + b + c) . h Tüm Alan = b . c + (a + b + c) . h 5. Silindir Tabanı daire olan prizmalara silindir denir. Silindirin yan yüzü dikdörtgen biçimindedir. Dikdörtgenin bir kenarı yükseklik kadar, diğer kenarı ise taban dairesinin çevresi kadardır.
Taban alanı= pr2
Taban çevresi 2pr olduğundan yanal alan 2prh olur.
6. Düzgün Çokgen Prizmalar Tabanı düzgün çokgenlerden oluşan prizmalara düzgün çokgen prizmalar deriz. Taban ayrıtları birbirine eşittir. Diğer dik prizmalarda olduğu gibi düzgün çokgen prizmalarda da yanal ayrıt aynı zamanda yüksekliktir. Dik prizmalarda taban şekli ne olursa olsun, hacmin taban alanı ile yüksekliğin çarpımı ve yanal alanın ise taban çevresi ile yüksekliğin çarpımı olduğunu unutmayalım. |